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I.  INTRODUCTION

The objective of this research effort was to determine the opti-
mum frequencies at which a radar should be operated to obtain reliable
aircraft classification. Previous efforts established the range of fre-
quencies which should be utilized to accomplish such classification.l'
5 In previously reported results a set of harmonically related fre-
quencies were used ranging in number from 12 down to 4, where the 4
frequencies were picked in the range most strongly contributing to the
reduction of classification errors. The present effort was motivated
by the realization that the frequency parameter is the most costly and
its use should therefore be minimized. The objective was thus explic-
itely set, first to find the optimum single frequency of operation if
only one frequency were permitted, and determine the minimum classifi-
cation error achievable when all other scattering parameters associated
with that frequency were utilized. Next, a two frequency exhaustive
search was performed to obtain the frequency combination that would
assure the minimum classification error. It was found that by utilizing
two frequencies the error levels were sufficiently low so that the intro-
duction of additional frequencies was not warranted. The range of fre-
quencies used was between 2 MHz and 24 MHz with the lower bound set
by the largest airplane, the Bl. The search for optimum frequencies
was carried out in increments of 2 MHz.

Previously published results dealt with four airplanes of similar
size, F104, F4, Mig 19 and Mig 21. To provide a more realistically
representative set of airplane classes, four additional airplanes were
introduced that substantially increased the range of sizes and shapes,
they were, F14, Mig 25, SR 71 and Bl.

The classification algorithm used in this work is the Nearest Neigh-
bor-rule. This choice was made due to both its nonparametric nature
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and its effectiveness in cases where the different classes are distrib-
uted on rather convolved surfaces with relatively close proximity to
each other.

Section Il discusses decision rules, Section III describes the
various features available for the aircraft classification process,
Section IV discusses the noise model chosen for contaminating the learn-
inqg sets to produce test sets, Section V describes the method through
which test sets were produced and misclassification probabilities com-
puted. Sections VI through IX present the performance results obtained
by utilizing feature vectors of increasing dimensionality ranging from
single frequency amplitude returns through two frequency complex returns.

[1. DECISION RULES

When the statistical nature of the corrupting noise is known the
optimum decision rule is that of Bayes, where the misclassification
probability is minimized. The average probability of error associated
with returns from class Ck is

N
plk) ?

Lon - P(x]a%)dx] (1)

1 XFRk

k
i
(k' and Rk denotes the region of n-space associated with the decision

where Nk denotes the number of discrete points,a; representing the class

rule for choosing class Ck given Nk sample vectors a?, Pk(i\ denotes

the a priori probability of occurrence of a?. The regions Rk are dis-

joint and jointly occupy the entire x domain.

Let K be the number of classes or objects to be distinguished and

P(Ck) denote the a priori probability of each class, the average proba-
bility of misclassificaiton of the overall system would be




Py = E p{p(c,). (2)

Combining (1), (2) and assuming Pk(i) = %— , we have
k
N

i ~—x

e P(xla'i‘)dx) (3)
XE
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Bayes rule is set up to minimize the above by adjusting Rk such that

e § max P(C )( 1 N§ J P(X|ak)df) (4)
e k=1 k N; i=1 xeRk 8 .

or in another notation

PS = 1 - [ max, P(C,) P(x|a) dx (5)

where the integral is carried out over the entire x domain and

N
k

P(xla) = &= ¥ p(x]a%) (6)
k i=1

is the average class-conditional probability density function.
For the following special conditions

(1) P(c,) = % , (7)

(2) There is only one point in each class, i.e.,




one chooses class C_ when P(xlcr) is the maximum, i.e.,
if P(xICr) = max, P(xlci), choose Cr‘ (9)

If the corrupted noise is additive gaussian, the point a" which
is at the minimum distance to the tested vector x yields the maximum

LY

P(x{Ci). and Bayes rule becomes equivalent to an N.N. classifier, i.e

if [|x-a"|| = min]| x-akll, choose C_, (10)
k

where we use the usual notation for the Euclidean distance,
k T *
[x=a%]] = [(x-a¥)T (x-a$)"]" . (11)
For the cases where there are more than one point in any one of

the classes, the N.N. rule classifies the unknown tested point x
as a member of the class Cr to which its nearest neighbor belongs, i.e.,

if ||x-a%|] = min|| x-akll , choose C_. (12)
j i K i r
The average probability of misclassification of an N.N. rule PZ‘N°
is bounded by the Bayes error in the following way6
B N.N. B K B
re < PhM <#B (2o ¥ Pe)’ 33)

where K is the number of classes.

The N.N. rule has a practical advantage over the Bayes rule in
that the difficulties of determining the regions Rk are eliminated,

and of course, the N.N. rule is nonparametric and consequently is ap-
plicable to classification problems where the statistics of the noise
are not known.




ITI. FEATURE SELECTION

The features at our disposal are the scattering matrix parameters
of a set of given frequencies. A major objective of a classification
effort is to minimize the dimensionality of the feature vector for a
given performance level. The "cost" of the various parameters, however,
in terms of system complexity and difficulty of extraction is not equal.
The most costly parameter is the frequency, since each additional fre-
quency may require an additional radar operating at the specified fre-
quency. It is for this reason that the present study is aimed at find-
ing the optimum frequencies given that either a single frequency or
at most two frequencies are available. The other parameters that are
available are the amplitude, phase and polarization. Here, too, the
associated costs are not the same. Obviously, amplitude is the easiest
parameter to obtain, polarization is next, and the most difficult one
is the phase parameter. The difficulty is in eliminating the phase
introduced by range and doppler. One way of eliminating these effects,
discussed in Section VIII, is by reference to the fundamental frequency
which is well inside the Rayleigh range and at which the target intro-
duces a very small phase shift. The use of the fundamental thus implies
the use of a third frequency if phase is extracted by the above method.

As to polarization we are assuming that two orthogonal polariza-
tion components are available.

Polarization

In previous studiesl’B’5

the classification performance was com-
puted and shown for each of two orthogonal polarizations. The two com-
ponents have different characteristics in that the component parallel
to the fuselage in the Rayleigh range of frequencies is much stronger
than that perpendicular to it, but it has been found that the perpen-
dicular component provides the best discrimination between classes.
Thus the first (parallel to the fuselage) provides good SNR in the

presence of noise while the second provides good classification properties,

5

1
|
|
|




1t is thus advisable to use both components in an actual radar. At
frequencies beyond the first resonance which the largest aircraft en-
counter the above statement does not apply, but since the orientation

of the aircraft with respect to the radar is a priori unknown, the hori-
zontal and vertical polarizations as described above cannot be preserved,
thus any polarization will on the average contain both components with

a changing mix. It was therefore decided not to present performance
curves for each polarization but rather assume that the radar utilizes
both.

IV. NOISE MODEL

The noise model representing the noise and errors of a radar system
should have both additive and multiplicative components. The additive

components correspond to corruptive influences such as thermal noise
and the multiplicative reflect such effects as measurement errors and
clutter. Because of the mathematical complexity introduced by multi-
plicative noise, the noise model chosen here is additive only but rep-
resents the multiplicative components, which are signal level dependent,
hy normalizing the noise variance to the signal power level. Thus for
=0.1 the noise standard deviation is 10% of the average signal level.

This normalization of the noise further removes such parameters as range
to the target, antenna gains, transmitter power, etc. from affecting

the relative strengths of noise vs signal. The statistical nature

of the noise model is gaussian due to the assumption that several rela-
tively independent sources of noise and error contribute to the total
corruptive influence; invoking the central 1imit theorem their sum tends
to a gaussian distribution.

It should be borne in mind that the precise nature of the noise
is less important than its effect on the classification performance.

Thus no attempt is made to combat the noise effect by devising schemes
taylored to its statistics. The noise serves strictly the purpose of

determining the degradation of performance with increasing noise levels,
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and the assessment of such performance as the selected feature sets
are varied.

The noise components are added to the signal as phasors in the
following way. A noisy amplitude return of the jth component of a test
vector is

e i
Lispnp? + (a2

where Sj is the jth frequency component of the signal amplitude signal
and Ny, N, are Gaussian noise components with zero means. When the
signals considered are complex, noise is added algebraically to the
two orthogonal components of the signal. Therefore, the jth component
of a test vector becomes

¢ 2
j(-sjr’".w’ + (Sj5%ng)
where Sjr and Sji are the real and imaginary components of the jth fre-
quency return at the selected aspect angle, and Ny, Ny are Gaussian

1* M- The standard

deviations of " through n, are normalized to SgAff, which is off by
1 S

noises whose statistics are the same as that of n
a factor of 1/ 2 from all the previous work but serves as a better
indicator of the noise level in terms of the uncorrupted signals.

V.  EXPERIMENTS BY MONTE CARLO SIMULATION

An analytical calculation of the probability of misclassification
for the N.N. rule is rather involved because it requires multidimensional
integration over extremely complicated boundaries. Therefore Monte
Carlo simulation was employed to compute performance. In the following

tests, 600 random numbers were generated in each case and added to the
noise free signals to form the test vectors. The newly formed vectors




were then classified as belonging to one of the classes according to
(13) and the probability of misclassification was computed by counting
the number of mistakes out of the total number of tests, which was 600
for each case.

The coordinate system utilized in stating the observation angles
and polarization is shown in Figure 1. The geometrical center of the
airplane coincides with the origin of the coordinate system. Four as-
pect angles are chosen in the experiments and their scattering returns,
as mentioned before, are numerically computed to provide the noise free
"learning" set of vectors.

Some a priori information about the aspect angle (8,¢) of an air-
craft is usually available which helps in the identification process.
In a practical situation, conventional radar Doppler and range combined
with known airplane flight dynamics in fact provide a fairly close es-
timate of (0,4). The estimate accuracy was assumed to be within +50
in & and 6. [In actuality the estimates are better than the above figure.
Assuming that it is known that (90,¢0) is within the above limits, only
an angle region of 10° in 6 and ¢ centered at (BO,¢0) need be considered.
Since the data are computed only at discrete values of aspect angle,
we have a set of angles each of which may correspond to the actual as-
pect angle of the aircraft.

Four center aspect angles corresponding to alternate (90,¢0) were

chosen as representative of the scattering characteristics of the air-
craft. They are,

(n°,n% nose on,
(90°,00°)  side view,

(90°,0°) bottom view,




/ ROLL ANGLE

Figure 1.  The coordinate systemdescribing aspect angles
and polarization.
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and
(45°,45°),

They approximate the parametric range of scattering values for
each aircraft. The data used in the experiments, therefore, consists
of the scattering returns of 9 different aspects, around each of the
above angles.

0 0
(05085)  (0.,645%),  (8,,0,-5°)

(4] 0 (o} (o]
(00‘509¢o)t (90'5 ’¢0+5 )’ (60-5 a¢0'5 )

0 0 0 0 0
(60+5 ’¢0)i (90+5 a¢0+5 ); <90+5 a¢0°5 )

In two of the above cases, namely "nose on" and "bottom view" the
geometrical symmetry reduces the number of aspect angle from 9 to 6
since for those situations (90+5°) and (90—50) yield the same electro-
magnetic response.

In the followiry simulations, all aspect angles are equally weighted
and the a priori probabilities are considered equal for all the aircraft

in evaluating the overall probability of misclassification.

To simpiify the notation on the plots the following abbreviations

are used.
Class Aircraft type Dimensions
CI: F 104, 16.69 m x 6.68 m x 4,11 m,
% Mig 19, 13.49 m x 11.12 m x 2.94 m,
C3: [ 17.76 m x 11.7 x x 4.96 m,

10




Mig 21, 15.76 m x 7.15 m x 4.50 m,

4
CB: Mig 25, 21.0m x 12,2 m x 5.02 m,
CG: SR 71, 32.74 m x 16,95 m x 5.64 m,
C,: RIS1 43,58 m x 23.77 m x 10.36 m,
Cq: F 14, 24.36 m x 20.98 m x 7.67 m,

The symbol f" = 2n MHz is used to represent the frequency, the first
harmonic is therefore 2 MHz.

It is clear from the above discussions that
[% . for (0°,0° and (90°,0°)
Pk(i) =

for (90°,90%) and (45°,45°)

o) —

¥ N (15)

The noise standard deviation is normalized with respect to each
individual aircraft return. The a priori probabilities here are all
set to be 1/8 corresponding to the eight aircraft stipulated.

In the following sections (VI-IX) the cases for single frequency

and dual frequency returns will be discussed and the computed classi-
fication errors presented.

11
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VI. SINGLE FREQUENCY AMPLITUDE RETURNS

The simplest case considered is classification using a single fre-
quency amplitude return, utilizing two orthogonal polarizations.

Figures 2-6 show the results for the best 5 frequencies out of
the 12 frequency data available. The performance is shown for one as-
pect angle but it is representative of the other angles as well. Since
the error rates are unacceptably high, it did not appear to be useful
to provide more detailed information on the performance of this feature
set. Each curve is computed by Monte Carlo simulation of Equation (1)
and the average curve (see Equation (2)) is plotted to show the overall
performance at this frequency. Note that the probabilities of misclassi-
fication for some aircraft are much larger than those for other aircraft,
indicating a bias effect among the targets to be classified. This ef-
fect is very large for some aircraft (e.qg., Pe(cl) and Pe(CR) in Figure
?) and deqrades the overall performance quite significantly. The phe-
nomenon is mainly due to the inhomogeneous distribution of data. For
instance, the identification of an aircraft with the data surrounded
hy those of others would be subject to more mistakes than one whose
data are only partially in proximity with others. Indeed in a two class
case, for example, where the data of one class surround that of the
other, the probability of choosing the surrounding class will keep in-
creasing as the noise increases, producing a pronounced bias to the
extent that for any large noise variances the probability of selecting
the surrounding class will tend to unity and the misclassification prob-
abilities for the two classes will tend to zero and unity respectively.
The bias effect may also produce apparently anomalous effects such as,
for example, curve Pe(Cz) in Figure 5, where the error probability starts
decreasing beyond a certain value of noise variance. To explain this
apparently anomalous behaviour we assume a particular distribution for
a 2 class classification. Each class has ? points in one dimensional
space as shown in Figure 7. Suppose the ? C1 points coincide and ?
C? points are not clustered together; instead, they are spread around
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PROBABILITY OF MISCLASSIFICATION
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PROBABILITY OF MISCLASSIFICATION

Figure 5.
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Probability of misclassification for individuag a&rcraft,
using amplitude returns at frequency f7 and (07,07)
aspect angle (nose on).




PROBABILITY OF MISCLASSIFICATION

Figure 6.
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Probability of misclassification for individual aircraft, l
using amplitude returns at frequency fm and (07,07)
aspect angle (nose on).
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Figure 7. A two class distribution leading to an anomalous
classification behavior.
o denotes class C]
x denotes class C,

the C, points as shown in the figure. The noise added to each class

is assumed to be Gaussian with zero mean. It is obvious that an N.N.
rule will lead to a fixed boundary for each region and the probability
of misclassification of C? is just one half of the sum of the two shaded
areas. It can be shown that

Po(Cy) = erfc(%;) - erfc(%?) " (15)

where the complementary error function is defined as

erfc(x) & [7 = e ° dy (16)
X

Jon

The function Pe(C?) is plotted in Figure 8. pe(CZ) increases as a/o

goes up from 0 to 1.05, and decreases as a/c increases. When a is fixed, i

PP(C?) increases as o (i.e., the standard deviation of Gaussian noise)

| aoes up till o = a/1.05; the shaded areas begin to decrease as o goes

| over this point and tend to zero as the noise level goes to infinity.
This shows that the probability of misclassification Pe(C?) does not
necessarily increase as the noise level goes up, as was seen for Pe(Co\

18
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in Fiqure 5. This anomalous behavior is reduced as the dimensionality
of the feature vector increases since the likelihood of class enclosure

by its neighbor decreases.

Pe (Cp)
0.2
0.1
1 | 1 L
oO | 2 3 4q

Ve

Figure 8. Average probability of misclassification of
Class C, in Figure 7.

An important characteristic of the classification features is the
size of aircraft. Since the electromagnetic amplitude response is ap-
proximately proportional to the size of an illuminated scatterer at
frequencies below resonance, the targets whose sizes vary significantly
from the average would be fairly easy to separate from the main group
of targets and hence bear smaller probabilities of error in classifi-
cation. This is shown by the performance of C6 and C7 in Fiqures ?
and 3. Note that C7 (B1) is the largest aircraft among all the investi-
qated ones and is distinquished from all others pretty easily in almost
all cases since its amplitude returns are much larger than those of
others over most of the operating frequency ranqe. This advantage
is not present for airplanes of approximately equal size. The discrim-
ination between some airplanes are difficult at certain frequencies

19




because their scattering returns are very similar. This similarity
occurs for different airplanes at different frequencies.

The classification performance shown in Figures 2-6 is for the
aspect angle (00,00). The performance at the other three observation
angles is represented in in Figures 9-11. The optimum frequency is
the same for all angles, namely 4 MHz. The change in the observation
and 1 1lumination angle does not affect significantly the performance.
This is due to relative shape independence of the amplitude response
when operating well within the Rayleigh range of frequencies. Fiqures
12-15 depict the average performance for the eight aircraft at each
of the observation anqles for the best frequencies. It is evident that
f, = 4 MHz is the optimum frequency for all observation angles. The
reason for the optimality of such a low frequency is that utilizing
single frequency amplitude returns the discrimination feature is the
scattering cross section which is directlv related to size (in the Rayleigh

range). The main advantages of higher frequencies is phase information

which is ignored when amplitude alone is used as a discriminant.

The relative average performance at the optimum frequency is shown
in Figure 16.

VII. SINGLE FREQUENCY COMPLEX RETURNS

A significant improvement over the previous results was achieved
by using phase information in addition to amplitude information. With
the introduction of phase, the dimensionality of each tested vector
increases from two to four. Also the performance at higher frequencies
hecomes superior to lower frequency performance because the phase vari-
ations become more pronounced at the higher frequencies, reflecting
shape changes. The size changes are detected by amplitude variation
and the combhined effect produces a substantially improved performance
compared to previous results. The irreqularities that appeared in the
last section are reduced drastically due to the higher dimensionality.

20
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Probability of misclassification for individual aipcraft,
using amplitude returns at frequency f, and \000.00‘
aspect angle (bottom view). '
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aspect angle (side view). -
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frequency amplitude returns. The observation angle is 6=90%, 4=0°.
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Figures 17-26 show the results for the best frequencies at four aspect
angles. The probabilities of misclassification can be seen to be sub-
tantially lower than for the amplitude features alone. The errors are
negligibly small up to noise levels of 10% of signal level and even

for 20% noise level the worst error probability is 0.15 at (900,900)
(side view) for targets Cl and C4, with other observation angles pro-
ducing substantially lower errors. In fact when the error is averaged
over all classes for each observation angle, the optimum frequencies
produce less than .05 probability of misclassification for the (90°,90°)
observation angle, .0? for (900,00) and undetectable errors for (00,00)
and (450,450\, for a 20% noise level injection (see Fiqures 27-30).

The bias phenomena described above still exist but are substan-
tially reduced, due to a higher dimensionality of the feature vectors.
Some frequencies, however yield significantly better performance than
others because the scattering responses of different airplanes at these
frequencies are more dissimilar, improving the overall performance (Fig-
ures 27-30). This is especially true at the two aspects, (00,00) and
(45°,45°) where the similarity of the data is pretty weak.

The data similarity are exemplified by the bottom view (90°,0°).
The two (vertically and horizontally) polarized waves are exciting the
fuselages and the wings of the aircraft. Their dimensions, however,
are very close for some aircraft (e.g., for fuselages: C1 (F 104) -
16.69 m, C4 (Mig 21) - 16.75 m, C3 (F 4) - 17.76 m; for wings: C1 -6.68
m, C4 - 7.6 m, etc.) At the low frequencies, where overall dimensions
dominate, the scattering returns of these aircraft are so close (see
Figures 31-3?) that to distinguish them becbmes rather difficult (see
Pe(Cl) and Pe(cd) in Figures 19 and ?0). This kind of data similarity
is reduced as the frequency increases (Pe (C1) and Pe(Ca) in Figures
7?1 and ??), where the scattering returns are more shape responsive.

At fl” we obtain the best performance at this aspect (Fiqure 2?).
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Comparing the complex responses of the targets (Figures 33-36)

to the amplitude responses, we see that employing the phase information
not only increases the dimensionality of the features, but also extends
the range of each feature from positive values alone to the whole real
axis. Note that the imaginary parts of the complex scattering returns
of all the aircraft at the bottom view are all positive, indicating
that the phases are always less than 90 degrees. This is due to the
fact that the height (thickness) of the aircraft is less than 1/4 wave-
length within the operating frequency range (? MHz - 24 MHz). The re-
sultant phase differences from the portions of the aircraft do not vary
more than 90 deqrees at this specific aspect angle. This limited vari-
ation in phase does not hold for other aspects like (OO,OO\ (see Figures
37-4?) and (450,450\, leading to a better performance at these aspects
when utilizing the phase information. Hence, the performance of the
classifier is rather orientation dependent (Figure 43).

In general as the frequency increases from the first harmonic up,
the performance improves both due to the increased scattering amplitude
in the Rayleigh range and the increased phase variations which are shape
sensitive. As the first resonance is crossed the scattering amplitude
oscillates with frequency (Figures 31, 32, 41, 42), since most targets,
however, resonate at different frequencies these oscillations contribute
to further data separation among the targets and thus improve overall

performance.
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VIII. SINGLE FREQUENCY COMPLEX RETURNS COMBINED WITH THE
AMPLITUDE OF THE FUNDAMENTAL HARMONIC

[n order to obtain target phase information it is necessary to
remove the phase produced by range and the doppler frequency. A rela-
tively simple method of achieving this is by utilizing the fundamental,
or first harmonic. Since the target phase at this low frequency is
approximately zero it may be assumed that the phase associated with
the target is strictly due to range. Also it can serve as a reference
for the removal of the doppler.

Let the return of the fundamental be given by

Ro = AO cos (wot + modt + g%i + ¢o)
where w, is the frequency of the fundamental, \O its wavelength, Ao
the amplitude of the scattered return, @0 its phase and the range delay
“nr/\o adding to the phase at the receiver. The frequency Wod is the
Noppler shift produced by the target's motion. Since the phase @0 may
he assumed to he neqligibly small the phase of a higher harmonic, at
say nw_, may he obtained by frequency multiplying the return of the
fundamental by n and comparing the phases of the two signals. Forming
the phase difference we obtain

2my

Adp = nu)ot + nwodt + -(X;/ﬁ)_ + ¢)n - n(uot - nmodt

Thus the range effect on phase as well as the Doppler are removed, yield-
ing the phase of the scattered object at the nth harmonic. If this
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approach is indeed utilized, one must assume the availability of the

first harmonic and it is apparent that it would be advantageous to utilize
this additional feature in the classification process. Including the
added feature yields the performance shown in Figures 44-55 which in-
dicate somewhat lower error rates than shown in Figures 18-30 that did

not use the lowest harmonic. The improvement varies with observation
angles and frequencies, in some cases reducing error probabilities by

a factor of two and in others just slightly.

A set of curves in Figures 56-59 summarizes the improvements af-
forded by the successive addition of the features discussed above. The
curves show the error probabilities resulting from the use of each of
the twelve frequencies f1 through fl?’ The comparison is made between
the use of A) amplitude alone, B) amplitude and phase, and C) amplitude
and phase of each frequency f2 through fl? in conjunction with the first
harmonic amplitude.

Comparing the complex (amplitude and phase) to amplitude alone,
a very large drop in error probabilities is evident at all but the lowest
harmonics where the phase contribution is rather small. Note that the
improvement is smallest in the 9=90°, $=0° case which is the bottom
view. The reason for this is the relatively small phase contribution
until frequencies reach fairly high levels. As mentioned above the
physical distance between the phase center and the geometrical center
from this observation angle is very small and consequently the target
phase is quite small and increases slowly with rising frequencies.
[t is in this case where the fundamental harmonic provides a substantial
improvement. The same can be seen at all angles for low frequencies
where phase is of little help. Curve C reflects substantially reduced
error probabilities. As the frequency increases the fundamental pro-

vides some improvement but it is not very significant.
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Figure 59,
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12 16
FREQUENCY (MHz)

Comparison of probability of misclassifica-
tion, using 3 different sets of features for
the eight aircraft at 6=45°, +=45°, The noise
added to each signal is 20% of the noise free
signal,

A=single freaquency amplitude returns.
8=single frequency complex returns.

C=single freauency complex returns with the
fundamental harmonic.
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The use of the first harmonic as a reference is advantageous if

the higher harmonic whose complex return is utilized is not a high multiple
of the fundamental. For under these circumstances the phase n¢0 is
indeed small. If, however n is large then n¢o is not negligible and
introduces a phase offset which prevents the accurate determination

of ¢ the target phase at the nth harmonic. For classification purposes,
however, the absolute target phase is not required, the relative phase
(¢n-n¢0) can serve as a modified phase feature which will yield in turn

a modified complex return. If the phase at the lowest harmonic is not
negligible there may be an advantage in using a higher harmonic than

the fundamental for phase reference. The main advantage in using a
higher frequency would be the resulting improvement in angular resolu-
tion, but additionally if n is large any error in measuring ¢0 would

get magnified by a large factor n. Thus picking an adjacent frequency
say (n-l\mn would eliminate this effect and would provide a much more
convenient implementation as a radar system., It would therefore be

of interest to evaluate the classification performance utilizing various
frequency pairs with one of them as a reference. Note that the measured
net phase of the kth target illuminated by the nth harmonic with the

mth harmonic as reference would be (¢§ - n/m ¢;), where ¢ﬁ is the target's
phase at frequency nw, .

IX. CLASSIFICATION PERFORMANCE UTILIZING TWO FREQUENCIES I

[n previous discussions we have limited the number of frequencies
used to one,except for the auxiliary amplitude of the fundamental.
At present we introduce the simultaneous use of two frequencies picked
from the set fl=? MHz through f1?=24 MHz. We will again consider first
the use of amplitude alone, followed by the utilization of both phase
and amplitude, that is two orthogonal components for each frequency,

and in each case two orthogonal polarizations are employed. We have,
therefore, a four feature vector for the amplitude case and an eight
feature vector for the complex, or amplitude and phase, case.
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The effort involved in choosing the optimum two frequencies is
substantially greater than twice the effort of choosing one frequency
hecause the two jointly optimum frequencies are not the best and second
hest single frequencies. This is true even in the case when all features
are mutually independent and even more so when they are correlated as
in the present case.7‘R We were thus faced with a study involving all
possible combinations of frequency pairs. Since no analytical method
for optimum choices is available one must resort to an exhaustive search.8

The classification results utilizing two frequency amplitude returns

are shown in Figures 60-69. Figures 60-64 show the performance for

each aircraft at the optimum frequency and the four chosen aspects.

The performance is considerably better than in using only a single fre-

quency amplitude return but worse than in wusing a single frequency

complex return although the same number of features are used. The better

performance of the single frequency may be due to the fact that in using

two frequency amplitude returns, the returns are always positive, while

in using one frequency complex returns, each component can be either

! positive or negative, increasing the range of the variable in feature

space and consequently providing a better performance. This indicates

that the phase information may be more effective than amplitude infor-

; mation in considering the use of additional features. Figure 63 shows
that the amplitude features yield a peculiar response for some indi-

f vidual aircraft (C4 here) as mentioned before, whereas in using one

: frequency complex returns this kind of odd response is essentially elim-

: inated. Figures 65-69 show the average performance of the best five

frequencies at the four chosen angles. As may be expected of amplitude

returns, they are fairly orientation invariant.

The probability of misclassification for each individual aircraft
. using two frequency complex returns are shown in Figures 70-89. The
1 performance curves for each aircraft for the best five frequencies at

{ each of the four aspect angles are all listed here because they all

did fairly well in terms of the overall average probability of error.
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The performance curves for (90°,°0°) are worse than others, but note
that we have doubled the error scale since error rates are very low.

The probabilities of individual misclassification of C1 and C4 are rela-
tively high because the scattering returns for those two airplanes are
close to each other over the observed frequency range, degrading the
overall performance. This occurs only when both sizes and shapes of
aircraft appear to be very similar at the chosen observation angles,

and does not happen too often. Again the orientation dependence is
quite strong for the same reasons as discussed before (Figure 94).

The average probability of misclassification has been reduced to less
than 15% in all aspect angles when the level of noise standard deviation
is 50 percent (Figures 90-94).

A performancesummary for different sets of features is shown in
Figures 95-98. The classification reliability increases as the fol-
lowing feature sets are selected in the order shown: (1) single fre-
quency amplitude returns, (?) two frequency amplitude returns, (3) single
frequency complex returns, (4) single frequency complex returns with
the fundamental harmonic, (5) two frequency complex returns. In uti-
lizing two features, the phase information shows stronger effect than

an amplitude at an additional frequency. This is caused by the close-
ness amonq two frequency amplitude returns since the system is operating
at frequencies mostly within the Rayleigh range. On the other hand
components of complex returns can go either positive or negative, in-
creasing their variability and reducing the closeness among the data.

The results obtained indicate that the optimum frequency pairs
at different observation angles are different. For a practical system,
it may be inconvenient to change the operating frequencies as the ori-
entation of the observed target varies. In this case a pair of fre-
quencies must be chosen beforehand in designing a radar system.
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Figure 48 Performance comparison for different combinations of
features at 8=45°, ¢=45° employing an optimum set of
frequency returns.




One would be led to chose the frequency pair such that the error
averaged over all aspect angles is smallest. However, this may not
be satisfactory since the error at a specific aspect might not be tol-
erable while the system performs extraordinarily well at other aspects.
Therefore, it it more reasonable to choose a frequency pair such that

the worst performance at all aspects considered is the smallest. From
the data available, this optimum frequency pair is fll and fl? (Figure
99). The performance when using these two frequencies at the four aspect
angles are plotted in Figure 99 and the unlabelled curve represents

the average. It is shown that at this optimum frequency pair, the scheme
performs very satisfactorily even when the noise level is extremely

high (0=0.5). This also shows that N.N. rule can distinguish the eight
aircraft in all the considered aspects with the low probability of mis-

classification when the system is operating at the optimum r‘requencies.
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Figure 99. The average performance at 4 different aspect
angles with the use of the optimum frequency
pair (fl1 and f12)’ and complex returns.
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X.  CONCLUSIONS

The study of optimum frequencies for aircraft classification has shown
that a high reliability of correct classification can be obtained when as
few as two frequencies are used. This holds true for noise environments
up to 30% of signal levels. A set of curves is provided showing the rela-
tive performances of single and two frequency returns and the effect of
phase information on the performance. These results indicate that phase
information is very effective in reducing misclassification probabilities.
Indeed single frequency returns provide adequate performance of over 95%
reliability in the presence of noise of up to 20% of signal level.

The eight aircraft that were chosen for classification represent a
rather difficult set since some of them are very similar in size while others
are substantially different. This puts a severe constraint on the choice
of frequencies since the set of small similar objects require frequencies
which are quite different from those accommodating the large objects. Since
the total number is limited to one or at most two frequencies, severe
comparisons are forced. It would, therefore, be expected that a less con-
straining set of aircraft may provide a better performance particularly
when a single frequency must be used.
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